Topics

Introduction to device families

- Diodes
 - Rectifier (RD)
 - Fast Recovery (FRD) and Soft Recovery
 - Extra Fast Recovery (XFRD)
 - HP Sonic FRD
- Thyristors
 - Phase Control (PCT)
 - » New Wespack range
 - <u>Medium Voltage (MVT)</u>
 - Distributed Gate (DGT)
 - » Fast Turn-off (FTO)

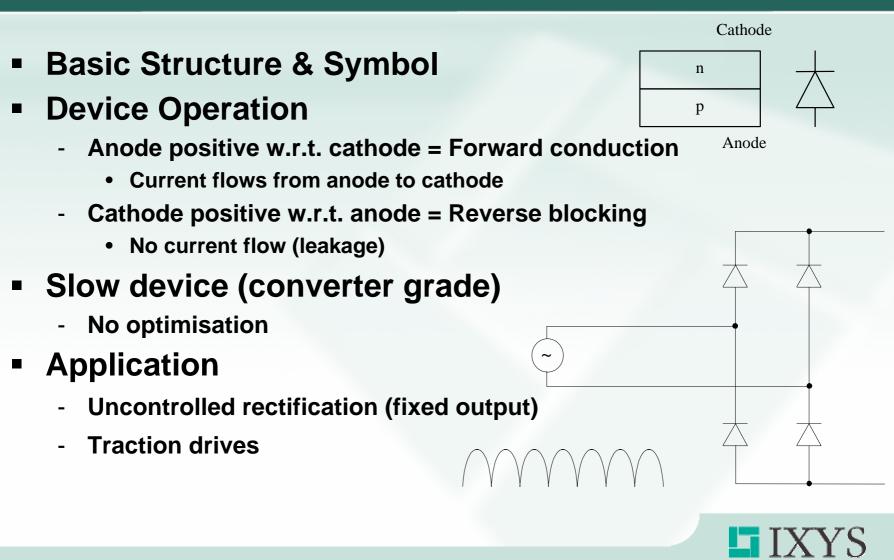
Topics

Ratings & Characteristics

- Common to all device types
 - Reverse recovery characteristics
- Specific to fast (inverter grade) device types
 - Fast Recovery Diodes & Fast Switching Thyristors
- Specific to slow (converter grade) device types
 - Rectifier Diodes and Phase Control Thyristors
- Specific to thyristors only
 - Turn-off time test

Application Issues

- Snubbers
- Selection of devices
- Gate Drives
- Clamping



Diode Product Range

Rectifier Diodes (RD)

Efficiency Through Technology

www.ixys.com

Fast Recovery Diodes (FRD) Fast, Soft, Extra Fast and HP Sonic FRDs

- Basic Structure & Symbol
- Basic operation as per rectifier diode
 - FRDs are fast operating devices
 - Device optimised for reverse recovery parameters (Lifetime control)
 - » Heavy metal doping (e.g. Gold, Platinum)
 - > Soft Recovery Diodes
 - » Electron irradiation (Fast Recovery Diodes)
 - » Ion implantation (e.g. Helium)
 - » Combinations also used (Extra Fast and HP Sonics)

FRD Applications

- Anti-parallel (freewheeling)
 - Snubber diode for GTO circuits
- Induction heating (often with fast switching thyristors)
- Series diode for asymmetrical operation / choppers

Cathode

www.ixys.com

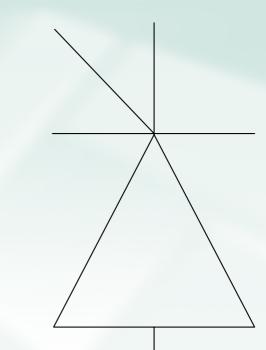
Fast Recovery Diodes (FRD) Fast, Soft, Extra Fast and HP Sonic FRDs

Soft Recovery Diode applications

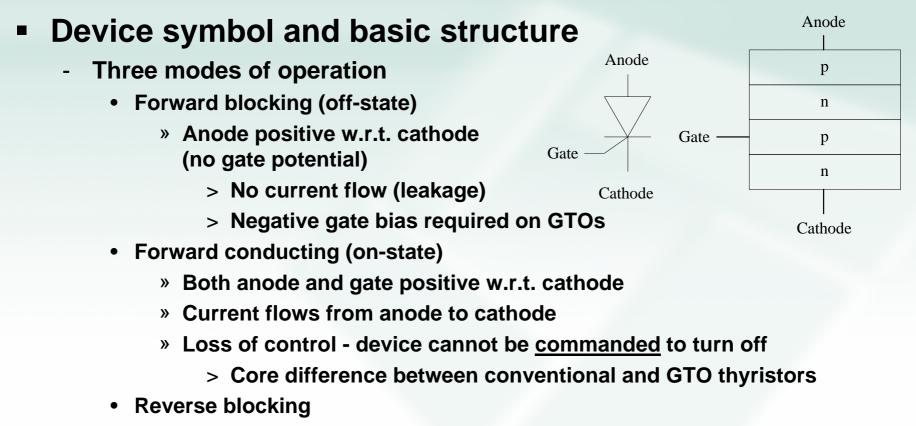
- RCD snubbers
- Voltage clamping
- Snubberless applications
- Note 125°C is maximum T_i on gold doped soft recovery diodes

Extra Fast Recovery Diode applications

- When low values of reverse recovery parameters are required
 - In association with IGBTs, GCTs
 - Pulse power


HP Sonic FRD applications

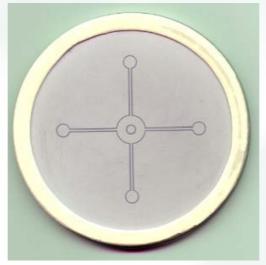
- Similar to XFRD applications but at higher di/dt
- When higher operating junction temperature required
 - XFRDs limited to 125°C
- Lower reverse recovery current than XFRD


Thyristors

Thyristors

- » Cathode positive w.r.t. anode
 - > No current flow (leakage)

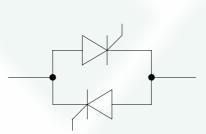
Phase Control Thyristor Product Range




Phase Control Thyristors (PCT) (1 of 2)

N series device operation

- Slow device (converter grade)
 - Not optimised for reverse recovery (except by special request/requirement)
 - Gate pattern not widely distributed
 - » Ring pattern (≤ 50mm diameter)
 - » Cross pattern (≥ 63mm diameter)
 - » Spoke pattern (100mm diameter)



Phase Control Thyristors (PCT) (2 of 2)

Applications

- Fully controlled rectification
 - Gate controlled device unlike rectifier diode
 - Hence, possible output:
 - Compare with output using rectifier diodes
- Electro-chemical power supplies
- HVDC projects & utilities
- Cyclo-converters
- Soft start systems
- AC switches –

Medium Voltage Thyristors (MVT)

- The term 'Medium voltage' is derived from target applications
- Not considered a 'fast' device
- These are essentially modified PCT's (Westcode P type)
 - Distributed gate patterns
 - 53mm & 75mm diameter
 - 87mm & 100mm diameter
 - Degree of lifetime control
- Controlled switching characteristics
 - Increased di/dt capability
 - Improved turn-off time
 - Better candidate for series operation

(1 of 2)

Medium Voltage Thyristors (MVT)

(2 of 2)

Summary

- Essentially PCT with gate distribution
- P-type gate structure most common in MVT
- Higher di/dt capability than PCT
- Controlled recovery and turn-off time (not fast)

Applications

- Medium voltage utilities
- High power dc drives
- Trackside substations
- Power conditioning
- Induction melting

Fast Thyristor Product Range

Distributed Gate Thyristors (DGT)

R series device operation

- Fast switching device (inverter grade)
 - Optimised for recovery parameters
 - » Extensive use of lifetime control techniques
 - Widely distributed gate patterns (more so than MVT)
 - » Up to 50mm diameter inclusive
 - » 53mm diameter
 - » 87mm and 100mm diameter
- Basic device operation as per PCT and MVT
- Controlled recovery characteristics and turn-off performance
- Note: Old 'D' series no longer exists as a part number
 - Such devices are now part of the 'R' series

Distributed Gate Thyristors (DGT)

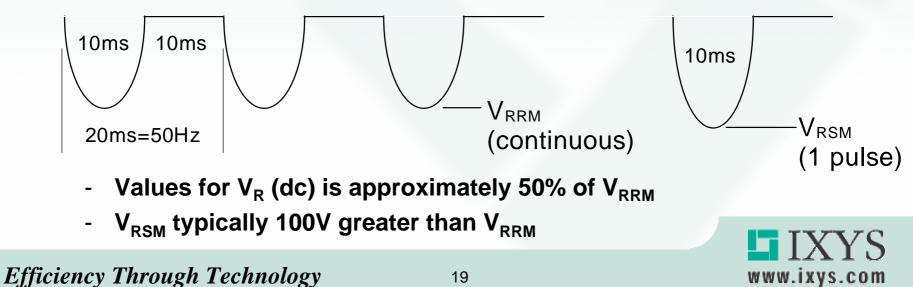
Applications

- Inverters
- High frequency welders
- DC chopper drives
- Uninterruptible power supplies (UPS)
- Induction heating

Fast turn-off thyristors (FTO)

- Regenerative gate structure
- Used in similar applications to DGT
 - At lower frequencies
- Most now reassigned as MVT

Ratings & Characteristics



IXYS

Ratings Common To All Device Types (1 of 3)

Maximum ratings

- Maximum operating junction temperature T_{j op} (T_{jmax} T_{vj})
- Maximum storage temperature T_{stg}
- Maximum repetitive reverse voltage V_{RRM}
 - Maximum repetitive reverse current I_{RRM} (at V_{RRM})
- Maximum non-repetitive reverse voltage V_{RSM}
- V_{RRM}/V_{RSM} <u>NOT</u> dc values (also applies to V_{DRM}/V_{DSM} on thyristors)

Ratings Common To All Device Types (2 of 3)

I_{FM}

10ms

10ms

Maximum ratings (cont.)

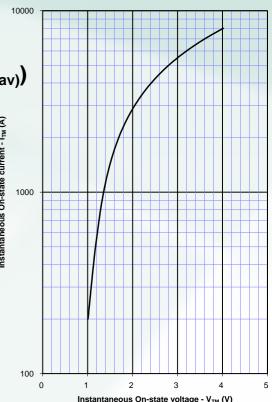
- Forward (on-state) current ratings (at specified heatsink temp.)
 - Average half sinewave current $I_{F(av)}/I_{T(av)}$ ($I_{FM} \div \pi$)
 - RMS half sinewave current $I_{F(RMS)}/I_{T(RMS)}$ (I_{FM} ÷ 2)
 - DC current I_F/I_T
- Max. non-repetitive forward (on-state) current Surge
 - Overload (fault) condition
 - Single cycle of half-sinewave current, 10ms width
 - Two separate ratings:
 - » Followed by reverse voltage (60% V_{RRM}) $I_{FSM(1)}/I_{TSM(1)}$
 - » Followed by no reverse voltage ($\leq 10V$) $I_{FSM(2)}/I_{TSM(2)}$
 - Load limit integral I²t (value for fusing)

» Calculated by
$$I^{2}t = \int_{0}^{t_{p}} I_{F}^{2}(t) \cdot dt = \frac{I_{FSM}^{2} \cdot t_{p}}{2}$$

Ratings Common To All Device Types (3 of 3)

- High I_{rm} e.g. 100-150kA on 87mm thyristor

- Explosion rating (Case non-rupture rating)
 - Effectively a test of the housing, not the device
 - » Enhancements (arc-shielding) can be added within housing
 - Simulation of major rectifier fault device made short-circuit prior to test
 - High level of <u>reverse</u> current passed through failed device and a fuse
 - Pass/fail criteria may vary usually need to pass a following leak-test
 - Use rating by selecting a fuse with a lower l²t
 - Important rating as when things go wrong.....


Characteristics Common To All Device Types

Characteristics

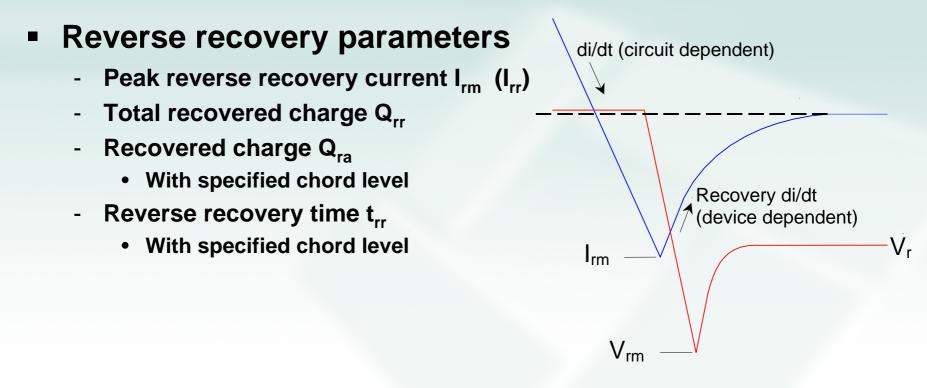
- Maximum forward (on-state) voltage V_{FM}/V_{TM}
 - Test limit V_{FM}/V_{TM} set at I_{FM}/I_{TM} (Usually 3 × I_{F(av)}/I_{T(av)})
- Limit forward (on-state) voltage curves
 - ABCD Coefficients

 $V_{F} = A + B \cdot \ln(I_{F}) + C \cdot I_{F} + D \cdot \sqrt{I_{F}}$

- Threshold voltage V_{T0} / Slope resistance r_{T}
 - » Calculation of max. current ratings
 - » Calculation of max. power dissipation
- Thermal resistance
 - Steady state value (junction to heatsink) R_{thJK}
 - Transient thermal impedance curve

WWW.ixys.com

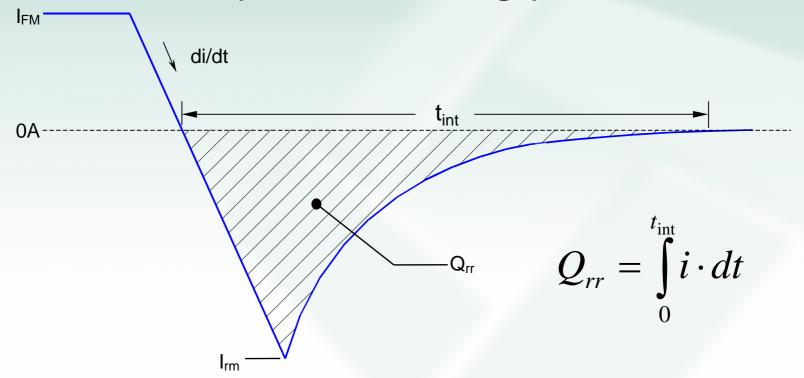
Reverse Recovery (1 of 5)


What is reverse recovery?

- Consider current waveform
 - Ideal situation
 - Real situation

- Generates recovery voltage
- Major issue when multiple devices connected in series
- Creates additional power loss \Rightarrow heat

Reverse Recovery (2 of 5)



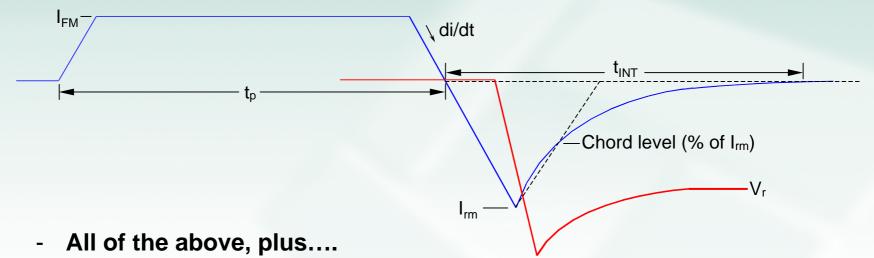
This information is frequently required on ALL product types

Reverse Recovery (3 of 5)

Definition of Q_{rr} (total stored charge)

- Area under curve from I=0A to t_{int} (Standard=150µs)
- Q_{rr} may appear as Q_s, Q_r, Q_{rec} etc.

Reverse Recovery (4 of 5)


 Definition of Q_{ra}, t_{rr} and K (S) factor I_{FM} K factor = $\frac{t_1}{t_2}$ $t_{rr} = t_1 + t_2 \qquad Q_{ra} = \frac{1}{2} \cdot t_{rr} \cdot I_{rm}$ S factor = $\frac{t_2}{t}$ di/dt t₂ 0A -50% I_{rm} (can also be 25% & 10%) K factor illustrates core difference between soft/fast diodes Irm

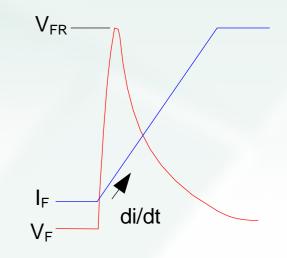
Efficiency Through Technology

www.ixys.com

Reverse Recovery (5 of 5)

Information required for recovery measurements

- For Q_{ra}, t_{rr} or K factor, chord level MUST be specified
 - Normally 50% but can also be 25% and 10%
- For Q_{rr}, specify t_{int}
- Test temperature CRITICAL
- Where charge appears only as Q_r, Q_s etc.
 - Must clarify whether Q_{rr} or Q_{ra} required

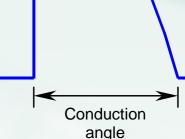

Ratings & Characteristics - Fast Products

Fast product ratings

- Frequency/energy ratings
 - Energy vs. pulse width T_j = T_j max
 - Frequency vs. pulse width
 - » 55°C / 85°C heatsink temperature
 - Square wave (various di/dt's)
 - Sine wave

Forward recovery voltage V_{FR}

- Measured exclusively on fast diodes



Ratings & Characteristics - Converter Grade

- Mean forward current vs. power dissipation
 - Square wave and sine wave
 - Various conduction angles

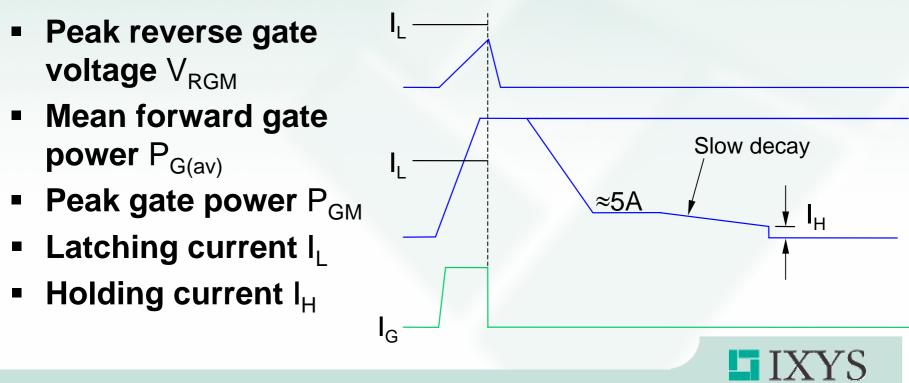
Maximum permissible heatsink temperature

- Mean forward current vs. heatsink temperature
 - Square wave
 - Sine wave
 - Various conduction angles
- Equivalent shown for dc, ½ wave, 3ph, 6ph on diodes

IXYS www.ixys.com

 $=\frac{I_{j_{\max}}-I_{K}}{R_{\dots}}$

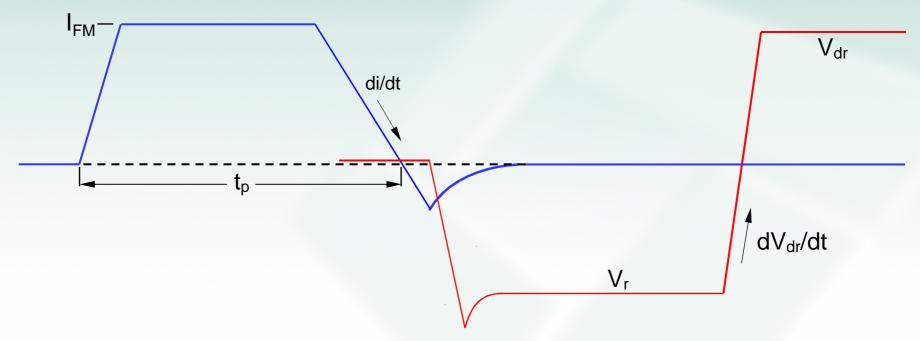
 $P_{\rm max}$


Ratings & Characteristics - Thyristors (1 of 2)

- Max. repetitive forward (off-state) voltage V_{DRM}
 - Maximum repetitive off-state current I_{DRM} (at V_{DRM})
- Maximum non-repetitive off-state voltage V_{DSM}
- Critical rate of rise of off-state voltage (dv/dt)cr
 - Measured to V_D=80% V_{DRM} (linear voltage ramp)
 - Failure is destructive
- Critical rate of rise of on-state current (di/dt)cr
 - Quoted for repetitive (50Hz) and non-repetitive duty
 - Simple turn-on test
 - Failure is destructive

Ratings & Characteristics - Thyristors (2 of 2)

- Gate trigger voltage V_{GT} and current I_{GT}
- Gate non-trigger voltage V_{GD} and current I_{GD}
- Peak forward gate current I_{FGM}

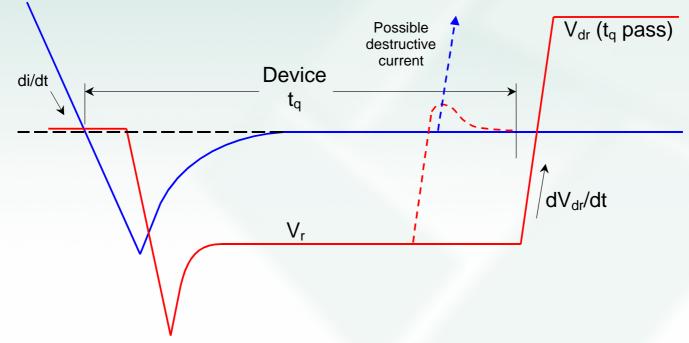


Efficiency Through Technology

www.ixys.com

Ratings & Characteristics - Turn-off Time (1 of 2)

Definition of turn-off time test and terms

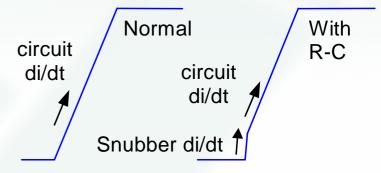

- All of this information is required
 - Plus test temperature CRITICAL

IXYS www.ixys.com

Ratings & Characteristics - Turn-off Time (2 of 2)

Turn-off time t_q

- Time before off-state voltage may be safely re-applied

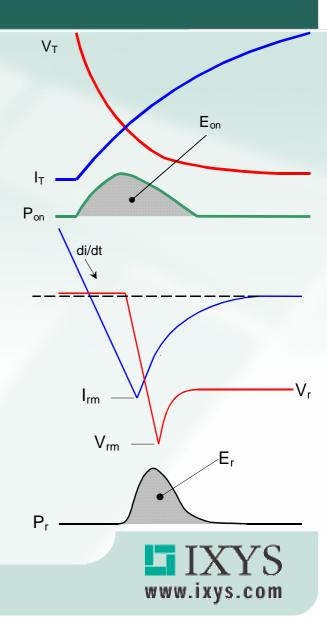

- Value of t_q affected by ALL illustrated parameters
- Often asked for on all thyristor types

Application issues (1 of 5)

Snubbers

- Resistor and capacitor connected in series
- Snubber then connected across device anode/cathode
 - Important to minimise inductance
- Used to restrict dv/dt and V_{rm} to safe values
- Affects reverse recovery waveform
 - Care needed when devices in series
- Changes turn-on waveform
 - Implications on di/dt performance
 - Snubber di/dt must be within device rating
- Careful design calculations
 - Min. resistance/max. capacitance limits

Application issues (2 of 5)


Switching energy losses

- Turn-on power P_{on}
- Turn-on energy loss E_{on}

$$P_{on} = V_T \cdot I_T \qquad E_{on} = \int_0^{I_{on}} V_T \cdot I_T$$

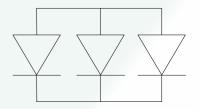
- Reverse recovery power P_r
- Reverse recovery energy loss E_r

$$P_r = V_r \cdot I_r \qquad E_r = \int_0^{I_r} V_r \cdot I_r$$

Application issues (3 of 5)

Selection of thyristor type

- Why select a Phase Control Thyristor (N type)
 - When a low V_T is important
 - High Average Current & Surge Current Ratings are required
 - Low frequency (up to 60Hz) applications and low di/dt
 - » Examples are cyclo-converters and AC switches
- Why select a Medium Voltage Thyristor (K type)
 - Higher voltage devices/medium voltage applications
 - » Line/power frequency applications (50/60Hz and up to 400Hz)
 - For multiple device operation e.g. series/parallel
 - » N-types are inappropriate due to lack of lifetime control
 - High power drives are a typical application
- Why select a Distributed Gate Thyristor (R type)
 - When a fast switching device is required (even at low frequencies)
 - R types always considered first for induction heating


Application issues (4 of 5)

Series operation

- Multiple devices required for system voltage rating
- Considerations needed are:
 - K series device most likely preferable to N series
 - Banding on reverse recovery parameters
 - Matching on leakage current
 - Matching on gate trigger parameters

Parallel operation

- Multiple devices required for system current rating
- Considerations needed are:
 - Banding on V_T
 - Banding on delay time (turn-on time)
 - Matching on gate trigger parameters

www.ixys.com

Application issues (5 of 5)

Thyristor gate drive

- Important note concerning gate trigger parameters
 - V_{GT}/I_{GT} are the bare <u>minimum</u> amounts required to trigger the device
 - They are absolutely NOT practical values
 - » The full di/dt capability of a device <u>CANNOT</u> be used this way
- Refer to gate drive note in any thyristor data sheet
 - Most important figures are:
 - » Open circuit voltage
 - » ${\rm I}_{\rm G}$ rise time especially when using device's full di/dt capability

www.ixys.com

- » I_{GM} especially for larger devices
- Keep to maximum ratings (Voltage & Power)

Clamping

- Important to clamp at correct force and EVENLY
- Failure to do this results in higher power dissipation, high V_T and reduced device lifetime